The Real Business Cycle Model Part 1

Felix Wellschmied

UC3M
Macroeconomics II

Goal

- We are going to study the so called Real Business Cycle Model.
- The model has been developed by Kydland and Prescott (1982).
- For their work (among others), they have received the Nobel price.

The idea

- For a long time, economists have thought about business cycles as inefficiencies.
- Hayeck (1932): Booms fed by artificially too low interest rates lead to a over-heating. A recession needs to "clean" the economy.
- Keynes (1937): Recessions result from a short fall in aggregate demand:
- Shocks to spending.
- Shocks to the money market.
- The dominant framework of the 70 's was Phillips (1958): A negative relation between economic activity and inflation. A theory grounded in Keynesian economics with sticky prices can explain this.
- The Phillips curve provides a strong justification to use fiscal and monetary policy to smooth the business cycle,

The idea II

- Reduced-form relationships like the Phillips curve became key ingredients of policy analysis.
- This type of Macroeconomic analysis had its height in the 1970s when the FED used extensively the so called MPS model to analyze the effects of monetary policy.
- The MPS model consists of 334 equations with 188 exogenous variables!
- To make this model manageable, it assumes adaptive expectations (more on that below).

The idea III

- During the 70s, economists started to realize that the reduced-form relationships such as the Philips-curve are not time-invariant.
- This has lead to a shift away from estimating reduced-form aggregate relationships and towards models of optimal behavior where agents respond to policy changes.

The idea IV

- RBC has changed our understanding of the business cycle fundamentally in two ways.
- First, it is a general equilibrium model, where agents optimize.
- Second, there are no spending shocks, sticky prices, or other market imperfections.
- Instead, households respond optimally to shocks in productivity.
- These shocks (and, hence, the cycle) are a by-product of technological advancement.
- There is no reason for these advancements to be deterministic.
- Hence, the economy fluctuates around a long-run trend.
- As behavior is optimal, there is no role for the government to do anything.

Think about the Solow model

Suppose you have a one-time increase in TFP:

- The steady state level of capital increases.
- As output increases, $s Y_{t}>\delta K_{t} \Rightarrow \Delta K_{t}>0$ and this continues until the steady state is reached.
- Similarly, $C_{t}=(1-s) Y_{t}$ increases.
- As $K_{t}<K^{\text {ss }}, M P K>M P K^{s s}$ and, hence, wages and the interest rate are higher than in steady state.
- In the new steady state, investment and prices are again constant.

The RBC Model

The Simplest Version

Plan

- We are going to start with the simplest version of the model.
- Households own the capital stock and possess the production technology (no need for firms).
- There is no labor supply decision.
- As all decisions are made by one entity, this is the social planner solution to the problem.

Environment

- There is a representative household who is infinitely lived and discounts the flow utility (CRRA preferences):

$$
\begin{equation*}
U\left(C_{t}\right)=\frac{C_{t}^{1-\gamma}}{1-\gamma} \tag{1}
\end{equation*}
$$

- It supplies inelastically one unit of labor, $H_{t}=1$.
- It owns the capital stock, K_{t}, that depreciates at rate δ.
- It possesses a production technology for an output good:
$Y_{t}=A_{t} K_{t}^{\alpha} H_{t}^{1-\alpha}=A_{t} K_{t}^{\alpha}$.

Technology

- At the heart of the RBC model lies a stochastic process for technology.
- We require a stationary environment. For simplicity, we assume technology is stationary.
- Under some assumptions, this is equivalent to a model with a deterministic trend growth rate.
- The cyclical component of technology follows:

$$
\begin{equation*}
\ln A_{t+1}=(1-\rho) \mu+\rho \ln A_{t}+\epsilon_{t+1}, \quad \epsilon_{t} \sim N\left(0, \sigma_{\epsilon}^{2}\right) \tag{2}
\end{equation*}
$$

- ρ guides the speed of mean reversion.
- μ simply shifts the level of technology and, thus, of output. As we do not care about the unit of measurement, we normalize $\mu=0$ to reduce notation.

Expectations

Key to the model is that the future is uncertain:

- Households cannot make deterministic plans but only plans conditional on possible future outcomes.
- In every period t, they form expectations about the future.
- We denote these expectations by \mathbb{E}_{t}.
- But how should these expectations be formed?
- During the 60 's, the typical assumption has been that people use adaptive expectations: $\mathbb{E}_{t} A_{t}=A_{t-1}$.

The rational expectation revolution

- During the 70's, economists have started to deviate from adaptive expectations.
- Adaptive expectations are inefficient and imply that households repeatedly make the same mistake.
- Instead, economists have moved to rational expectations.
- The main driving force behind this revolution has been Lucas Jr (1972).
- Which is another Nobel price winning idea.

The rational expectation revolution II

- Rational expectations assume that agents make use of all available information in an optimal way.
- They take today's state, A_{t}, as given and know the model including the law of motion of technology.
- Not only do they form expectations about tomorrow but about all possible future periods.
- This is complex! I need to know the probability distribution over all possible states at each point (infinite) in the future.
- Fortunately, dynamic programing simplifies this problem greatly!

The household problem

In the initial period $(t=0)$, households make a conditional plan (on possible productivity realizations) of consumption and capital choices from today to infinity:

$$
\begin{align*}
& \max _{C_{t}, K_{t+1}} \mathbb{E}_{0}\left\{\sum_{t=0}^{\infty} \beta^{t} \frac{C_{t}^{1-\gamma}}{1-\gamma}\right\} \tag{3}\\
& \text { s.t. } \\
& C_{t}+K_{t+1}=Y_{t}+(1-\delta) K_{t} \tag{4}\\
& Y_{t}=A_{t} K_{t}^{\alpha} \tag{5}\\
& I_{t}=K_{t+1}-(1-\delta) K_{t} \tag{6}\\
& \ln A_{t+1}=\rho \ln A_{t}+\epsilon_{t+1} \tag{7}
\end{align*}
$$

The maximization problem

Let λ_{t} be the Lagrange multiplier on the budget constraint. Hence, the Lagrangian is:

$$
\begin{equation*}
\Lambda_{t}=\mathbb{E}_{0}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[\frac{C_{t}^{1-\gamma}}{1-\gamma}-\lambda_{t}\left[C_{t}+K_{t+1}-A_{t} K_{t}^{\alpha}-(1-\delta) K_{t}\right]\right]\right\} \tag{8}
\end{equation*}
$$

and optimal behavior is given by the first order conditions:

$$
\begin{align*}
& \frac{\partial \Lambda_{t}}{\partial C_{t}}=0 \tag{9}\\
& \frac{\partial \Lambda_{t}}{\partial K_{t+1}}=0 \tag{10}
\end{align*}
$$

Optimal behavior

$$
\begin{equation*}
C_{t}^{-\gamma}=\lambda_{t} \tag{11}
\end{equation*}
$$

(13)

- (11): Marginal benefit of consumption $=$ its marginal cost.

Optimal behavior

$$
\begin{align*}
C_{t}^{-\gamma} & =\lambda_{t} \tag{11}\\
\beta^{t} \lambda_{t} & =\mathbb{E}_{t}\left\{\beta^{t+1} \lambda_{t+1}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{12}
\end{align*}
$$

- (11): Marginal benefit of consumption = its marginal cost.
- (12): Marginal cost of saving $=$ its marginal benefit.
- Marginal benefit $=$ Constrained tomorrow gets relaxed by $M P K_{t+1}+(1-\delta)$.

Optimal behavior

$$
\begin{align*}
& C_{t}^{-\gamma}=\lambda_{t} \tag{11}\\
& \beta^{t} \lambda_{t}=\mathbb{E}_{t}\left\{\beta^{t+1} \lambda_{t+1}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{12}\\
& C_{t}^{-\gamma}=\mathbb{E}_{t}\left\{\beta C_{t+1}^{-\gamma}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{13}
\end{align*}
$$

- (11): Marginal benefit of consumption $=$ its marginal cost.
- (12): Marginal cost of saving = its marginal benefit.
- Marginal benefit $=$ Constrained tomorrow gets relaxed by $M P K_{t+1}+(1-\delta)$.
- (13) is called the Euler equation.

Optimality and expectations

$$
\begin{equation*}
C_{t}^{-\gamma}=\mathbb{E}_{t}\left\{\beta C_{t+1}^{-\gamma}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{14}
\end{equation*}
$$

- Note, K_{t+1} is chosen today and, hence, known today.
- However, A_{t+1} is unknown today.
- Moreover, for different realizations of A_{t+1}, the household chooses different C_{t+1} which is, thus, unknown today.
- Hence, the right hand side has the expectation operator from today. Rational expectations imply that we compute the probability distribution for each possible A_{t+1}.
- Note, the optimality condition links only period t to $t+1$. We do not require expectations over $A_{t+n} \forall n>1$ to solve this problem.

Euler equation

Let us interpret the Euler equation:

$$
\begin{equation*}
C_{t}^{-\gamma}=\mathbb{E}_{t}\left\{\beta C_{t+1}^{-\gamma}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{15}
\end{equation*}
$$

At the optimum, the gain of consuming one more unit today (the marginal utility of consumption) $=$ the gain from one more expected unit of consumption tomorrow (the expectation of marginal utility of consumption tomorrow times the expected return on savings).

Optimal behavior II

$$
\begin{equation*}
1=\mathbb{E}_{t}\left\{\frac{\beta C_{t+1}^{-\gamma}}{C_{t}^{-\gamma}}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{16}
\end{equation*}
$$

- When $\mathbb{E}_{t}\left\{\frac{\beta C_{t+1}^{-\gamma}}{C_{t}^{-\gamma}}\right\}<1$ the household expects consumption growth.
- In that case, $\mathbb{E}_{t}\left\{\alpha A_{t+1} K_{t+1}^{\alpha-1}\right\}>\delta$.
- A high expected marginal product of capital makes me reduce consumption today relative to the future.
- Hence, a positive technology shock increases investment today.

Equilibrium

An equilibrium is a set of allocations (C_{t} and K_{t+1}) taking K_{t}, A_{t}, and the stochastic process for A_{t} as given such that the budget constrained, (4), and the optimality condition (13) hold.

Solution to the model

The solution to the model is given by the following set of equations

$$
\begin{align*}
& 1=\mathbb{E}_{t}\left\{\frac{\beta C_{t+1}^{-\gamma}}{C_{t}^{-\gamma}}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{17}\\
& C_{t}+K_{t+1}=Y_{t}+(1-\delta) K_{t} \tag{18}\\
& Y_{t}=A_{t} K_{t}^{\alpha} \tag{19}\\
& I_{t}=K_{t+1}-(1-\delta) K_{t} \tag{20}\\
& \ln A_{t+1}=\rho \ln A_{t}+\epsilon_{t+1} \tag{21}
\end{align*}
$$

Difficulty: the Euler equation is non-linear (more on this later).

Deterministic steady state

We begin with studying the deterministic economy: $\epsilon_{t}=0$ and, hence, $A_{t}=1$. Let us postulate that a steady state exists with $C_{t}=C_{t+1}=C^{s s}$, and $K_{t}=K_{t+1}=K^{s s}$.

From the Euler equation:

$$
\begin{equation*}
K^{s s}=\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{1}{1-\alpha}} \tag{22}
\end{equation*}
$$

Deterministic steady state

We begin with studying the deterministic economy: $\epsilon_{t}=0$ and, hence, $A_{t}=1$. Let us postulate that a steady state exists with $C_{t}=C_{t+1}=C^{s s}$, and $K_{t}=K_{t+1}=K^{s s}$.

From the Euler equation:

$$
\begin{equation*}
K^{s s}=\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{1}{1-\alpha}} \tag{22}
\end{equation*}
$$

Hence, we have found a steady state. Once $K_{t}=K^{s s}$, the Euler equation dictates that $C_{t}=C_{t+1}$. Note, $K^{s s}<K^{\text {Gold }}$ from the Solow model because of time discounting.

Deterministic steady state II

From the production function:

$$
\begin{equation*}
Y^{s s}=\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{\alpha}{1-\alpha}} \tag{23}
\end{equation*}
$$

From the budget constrained:

$$
\begin{equation*}
C^{s s}=\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{\alpha}{1-\alpha}}-\delta\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{1}{1-\alpha}} \tag{24}
\end{equation*}
$$

From the definition of investment:

$$
\begin{equation*}
I^{s s}=\delta\left(\frac{\alpha}{\frac{1}{\beta}-1+\delta}\right)^{\frac{1}{1-\alpha}} \tag{25}
\end{equation*}
$$

Linearization

- To simplify our solution of non-linear equations, we are going to use a linear approximation.
- In specific, we will use first-order Taylor approximations around the deterministic steady state: $f(x) \approx f\left(x^{5 s}\right)+f^{\prime}\left(x^{5 s}\right)\left(x-x^{5 s}\right)$.
- That is, we use a purtubation around the steady-state.
- As you know, the approximate is only good close to the point around which we approximate.
- We could use higher-order expansions to improve our approximation.

Log-linearization

In general, we could take the system as it is given. However, writing the system in logs proves to be particularly useful. The resulting solution has the interpretation of a percentage point deviation from steady state.
Log-linearization follows two steps:
(1) Write all variables in terms of log deviations from their deterministic steady state: $x_{t}=f\left(\hat{x}_{t}\right)=f\left(\ln x_{t}-\ln x^{5 s}\right)$.
(2) Use a first-order Taylor approximation around the deterministic steady state: $f\left(\hat{x}_{t}\right) \approx f\left(\hat{x}^{s s}\right)+f^{\prime}\left(\hat{x}^{s s}\right)\left(\hat{x}_{t}-\hat{x}^{s s}\right)$.

We start with deriving four rules for log-lineraization that we will apply afterwards.

Log-linearization II

Using these definitions, we can write a variable x_{t} as:

$$
\begin{equation*}
x_{t}=x^{s s} \frac{x_{t}}{x^{s s}}=x^{s s} \exp \left(\ln x_{t}-\ln x^{s s}\right)=x^{s s} \exp \left(\hat{x}_{t}\right) \tag{26}
\end{equation*}
$$

Taking the Taylor expansion gives us LI Rule 1:

$$
\begin{equation*}
x_{t}=x^{5 S} \exp \left(\hat{x}_{t}\right) \approx x^{5 S} \exp \left(\hat{x}^{5 S}\right)+x^{5 s} \exp \left(\hat{x}^{5 S}\right)\left(\hat{x}_{t}-\hat{x}^{5 S}\right)=x^{5 S}\left(1+\hat{x}_{t}\right) \tag{27}
\end{equation*}
$$

because $\frac{\partial \exp (\hat{x})}{\partial \hat{x}}=\exp (\hat{x})$ and $\hat{x}^{s s}=0$.

Log-linearization III

Using the same logic, we arrive at LI Rule 2:

$$
\begin{equation*}
x_{t} y_{t} \approx x^{s s}\left(1+\hat{x}_{t}\right) y^{s s}\left(1+\hat{y}_{t}\right) \approx x^{s s} y^{s s}\left(1+\hat{x}_{t}+\hat{y}_{t}\right) \tag{28}
\end{equation*}
$$

because multiplying two small numbers is approximately zero: $\hat{x}_{t} \hat{y}_{t} \approx 0$. Moreover, we have for a constant a :

$$
\begin{equation*}
x_{t}^{a}=\left(x^{5 S}\right)^{a} \exp \left(a \ln x_{t}-a \ln x^{5 s}\right)=\left(x^{5 s}\right)^{a} \exp \left(a \hat{x}_{t}\right) \tag{29}
\end{equation*}
$$

And, hence, we arrive at LI Rule 3.

$$
\begin{equation*}
x_{t}^{a} \approx\left(x^{s s}\right)^{a} \exp \left(a \hat{x}^{s s}\right)+\left(x^{s s}\right)^{a} a \exp \left(a \hat{x}^{s s}\right)\left(\hat{x}_{t}-\hat{x}^{s s}\right)=\left(x^{s s}\right)^{a}\left(1+a \hat{x}_{t}\right) \tag{30}
\end{equation*}
$$

Finally, LI Rule 4 says:

$$
\begin{equation*}
x_{t}^{a} y_{t}^{b} \approx\left(x^{s s}\right)^{a}\left(y^{s s}\right)^{b}\left(1+a \hat{x}_{t}+b \hat{y}_{t}\right) \tag{31}
\end{equation*}
$$

Log-linearizing investment

Investment:

$$
\begin{equation*}
I_{t}=K_{t+1}-(1-\delta) K_{t} \tag{32}
\end{equation*}
$$

Using LI Rule 1 yields:

$$
\begin{align*}
I^{s s}\left(1+\hat{I}_{t}\right) & =K^{s s}\left(1+\hat{K}_{t+1}\right)-(1-\delta) K^{s s}\left(1+\hat{K}_{t}\right) \tag{33}\\
\delta \hat{l}_{t} & =\hat{K}_{t+1}-(1-\delta) \hat{K}_{t} . \tag{34}
\end{align*}
$$

Log-linearizing technological process

Technological progress:

$$
\begin{equation*}
\ln A_{t+1}=\rho \ln A_{t}+\epsilon_{t+1} \tag{35}
\end{equation*}
$$

First, we slightly rewrite this equation:

$$
\begin{align*}
A_{t+1} & =\exp \left(\rho \ln A_{t}\right) \exp \left(\epsilon_{t+1}\right) \tag{36}\\
A_{t+1} & =A_{t}^{\rho} \exp \left(\epsilon_{t+1}\right) \tag{37}
\end{align*}
$$

On the left, we can apply LI Rule 1, and on the right we apply LI Rule 4:

$$
\begin{align*}
\left(1+\hat{A}_{t+1}\right) & =\left(1+\rho \hat{A}_{t}+\ln \exp \left(\epsilon_{t+1}\right)-\ln \exp (0)\right) \tag{38}\\
\hat{A}_{t+1} & =\rho \hat{A}_{t}+\epsilon_{t+1} \tag{39}
\end{align*}
$$

because $A^{s s}=\exp \left(\epsilon^{s s}\right)=1$.

Log-linearizing Euler equation

$$
\begin{equation*}
C_{t}^{-\gamma}=\mathbb{E}_{t}\left\{\beta C_{t+1}^{-\gamma}\left(\alpha A_{t+1} K_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \tag{40}
\end{equation*}
$$

Using again LI Rule 1 and LI Rule 4 yields:

$$
\begin{align*}
& \left(C^{s s}\right)^{-\gamma}\left(1-\gamma \hat{C}_{t}\right)= \\
& \mathbb{E}_{t}\left\{\left(C^{s s}\right)^{-\gamma} \beta\left(1-\gamma \hat{C}_{t+1}\right)\left[1-\delta+\alpha\left(K^{s s}\right)^{\alpha-1}\left(1+\hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right)\right]\right\} \\
& \quad\left(1-\gamma \hat{C}_{t}\right)= \\
& \mathbb{E}_{t}\left\{\left(1-\gamma \hat{C}_{t+1}\right)\left[\beta-\beta \delta+\beta \alpha\left(K^{s s}\right)^{\alpha-1}\left(1+\hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right)\right]\right\} \tag{41}
\end{align*}
$$

Insights from the Euler equation

Now substituting for the steady state capital stock:

$$
\begin{align*}
& \left(1-\gamma \hat{C}_{t}\right)= \\
& \quad \mathbb{E}_{t}\left\{\left(1-\gamma \hat{C}_{t+1}\right)\left[1+(1-\beta(1-\delta))\left(\hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right)\right]\right\} \tag{42}
\end{align*}
$$

With $\hat{C}_{t+1} \hat{A}_{t+1} \approx \hat{C}_{t+1} \hat{K}_{t+1} \approx 0$ and rearranging yields:

$$
\begin{equation*}
\mathbb{E}_{t} \hat{C}_{t+1}-\hat{C}_{t}=\frac{1}{\gamma}(1-\beta(1-\delta))\left[\mathbb{E}_{t} \hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right] \tag{43}
\end{equation*}
$$

- A high capital stock tomorrow leads to low consumption growth.
- A high capital stock implies capital is relatively unproductive.
- There are little gains to further investment and, hence, consumption is high today.

Insights from the Euler equation II

$$
\begin{equation*}
\mathbb{E}_{t} \hat{C}_{t+1}-\hat{C}_{t}=\frac{1}{\gamma}(1-\beta(1-\delta))\left[\mathbb{E}_{t} \hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right] \tag{44}
\end{equation*}
$$

- High expected productivity tomorrow leads to high consumption growth.
- A high productivity makes capital more productive.
- There are high gains to further investment and, hence, consumption is low today.

Insights from the Euler equation III

$$
\begin{equation*}
\mathbb{E}_{t} \hat{C}_{t+1}-\hat{C}_{t}=\frac{1}{\gamma}(1-\beta(1-\delta))\left[\mathbb{E}_{t} \hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right] . \tag{45}
\end{equation*}
$$

- Strength depends on the elasticity of intertemporal substitution, $\frac{1}{\gamma}$.
- When households are highly willing to trade current for future consumption, productivity shocks will lead to larger responses in investment.
- Note, with a CRRA utility function, there is a one-to-one link between risk aversion and the EIS.

Log-linearizing budget constraint

Budget constraint:

$$
\begin{equation*}
C_{t}+K_{t+1}=Y_{t}+(1-\delta) K_{t} \tag{46}
\end{equation*}
$$

Using LI Rule 1 gives us:

$$
\begin{align*}
C^{s s}\left(1+\hat{C}_{t}\right)+K^{s s}\left(1+\hat{K}_{t+1}\right) & =Y^{s s}\left(1+\hat{Y}_{t}\right)+(1-\delta) K^{s s}\left(1+\hat{K}_{t}\right) \tag{47}\\
\frac{C^{s s}}{K^{s s}}\left(1+\hat{C}_{t}\right)+\left(1+\hat{K}_{t+1}\right) & =\frac{Y^{s s}}{K^{s s}}\left(1+\hat{Y}_{t}\right)+(1-\delta)\left(1+\hat{K}_{t}\right) \tag{48}
\end{align*}
$$

Now multiply out the constants:

$$
\begin{align*}
& \frac{C^{s s}}{K^{s s}} \hat{C}_{t}+\frac{Y^{s s}}{K^{s s}}- \delta+1+\hat{K}_{t+1}= \\
& \frac{Y^{s s}}{K^{s s}}+\frac{Y^{s s}}{K^{s s}} \hat{Y}_{t}+(1-\delta)+(1-\delta) \hat{K}_{t} \tag{49}\\
& \frac{C^{s s}}{K^{s s}} \hat{C}_{t}+\hat{K}_{t+1}=\frac{Y^{s s}}{K^{s s}} \hat{Y}_{t}+(1-\delta) \hat{K}_{t} \tag{50}
\end{align*}
$$

Log-linearizing production function

Production function:

$$
\begin{equation*}
Y_{t}=A_{t} K_{t}^{\alpha} \tag{51}
\end{equation*}
$$

Using LI Rule 1 and LI Rule 4 yields:

$$
\begin{align*}
Y^{s s}\left(1+\hat{Y}_{t}\right) & =A^{s s}\left(K^{s s}\right)^{\alpha}\left(1+\hat{A}_{t}+\alpha \hat{K}_{t}\right) \tag{52}\\
\hat{Y}_{t} & =\hat{A}_{t}+\alpha \hat{K}_{t} \tag{53}
\end{align*}
$$

The equation highlights the key propagation mechanism of the RBC model. Output moves one-to-one with productivity. Additionally, it increases with the capital stock which itself is moving with productivity. The strength of this propagation depends on α.

Summarizing log-linearization

$$
\begin{align*}
& \mathbb{E}_{t} \hat{C}_{t+1}-\hat{C}_{t}=\frac{1}{\gamma}(1-\beta(1-\delta))\left[\mathbb{E}_{t} \hat{A}_{t+1}+(\alpha-1) \hat{K}_{t+1}\right] \tag{55}\\
& \frac{C^{s s}}{K^{s s}} \hat{C}_{t}+\hat{K}_{t+1}=\frac{Y^{s s}}{K^{s s}} \hat{Y}_{t}+(1-\delta) \hat{K}_{t} \tag{56}\\
& \hat{Y}_{t}=\hat{A}_{t}+\alpha \hat{K}_{t} \tag{57}\\
& \delta \hat{I}_{t}=\hat{K}_{t+1}-(1-\delta) \hat{K}_{t} \tag{58}\\
& \hat{A}_{t+1}=\rho \hat{A}_{t}+\epsilon_{t+1} \tag{59}
\end{align*}
$$

This is a system of five variables and five linear difference equations that we can solve (Solution).

Note, with a first-order Taylor expansion, uncertainty does not affect behavior, i.e., none of the variables depends on σ_{ϵ}.

Parametrization

- We have seen that the model is qualitatively consistent with some basic business cycle factors.
- To understand whether it is also quantitatively consistent, we need to assign values to the different parameters.
- We will first proceed with what is called calibration: Assigning N parameter values to match N moments in the data.
- Calibrations is the simplest way but it has some drawbacks:
- Using only some data moments wastes information.
- There are no measures of statistical accuracy or goodness of fit.

Alternatives to calibration

Full information approach:

- Given some parameter vector p, the model generates time series for macroeconomic aggregates.
- Choose the vector p such that we maximize the likelihood that our model generates the observed data series.

GMM:

- Instead of the entire time-series, select some moments in the data.
- Given some parameter vector p, the model generates the analogous set of moments.
- Choose the vector p such that we minimize the distance between the moments observed in the data and in the model.

Calibration strategy

Kydland and Prescott (1982) suggest to use the following strategy:

- Use the parameters of the model to match long-run trends in the data. This is simply the calibration of the Neo-Classical growth model.
- The only parameters matching business cycle facts are those from the technological progress. We use these to match the process of TFP in the data.
- Hence, we ask how much fluctuations in macroeconomic aggregates can we explain by exogenous fluctuations in TFP.

Calibration, long-run moments

- The model period is one quarter.
- A yearly real interest rate of $4 \%: \beta=0.99$.
- Match a capital share of income of 0.33: $\alpha=0.33$.
- A capital depreciation rate of $2.5 \%: \delta=0.025$.
- Micro-estimate for risk aversion: $\gamma=2$.

Calibration, business cycle moments

- Importantly, we need to treat the model as the data, that is, apply an HP filter.
- An autocorrelation in TFP of 0.76: $\rho=0.95$.
- The variance of an $\operatorname{AR}(1)$ process is: $\frac{\sigma_{\epsilon}^{2}}{1-\rho^{2}}$. The data variance is 0.0126^{2}. We require $\sigma_{\epsilon}=0.0095$.

Solving the model numerically

We are going to solve the model using Dynare which is an add-on program library for Matlab.

- Dynare computes for us the linearization around the steady state.
- It solves the steady state numerically.
- It simulates the economy, computes moments, and computes impulse response functions.
- It also allows for higher-order Taylor-series expansions where risk starts to matter.

The structure of Dynare

- You write your program in a so-called .mod file. Simply write it in a Matlab file and save it as a .mod file instead of a .m file.
- The program consists of 6 parts (see next slides).
- You call this file from Matlab using: dynare FILENAME noclearall

Declarations

In this part, you declare the names of your endogenous (var) and exogenous (varexo) variables, as well as, the parameters of the model.

```
%---------------------------------------------------------------------------
% 1. Declarations
%---------------------------------------------------------------------------
var c, k, a, y, i;
varexo e;
parameters beta, alpha, delta, rho, gamma,
    sigshock, k_init, y_init, c_init, i_init;
```


Set the parameter values

You may either set the parameter values directly in Dynare, or load them from a Matlab file as I do here:

```
% 2. Parameter values
8---------------------------------------------------------------------
o!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% Below load and set all the necessary parameter values
oᄋᄋ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
load parametervalues;
set_param_value('beta',par.beta);
set_param_value('alpha',par.alpha);
set_param_value('delta',par.delta);
set_param_value('rho',par.rho);
set_param_value('gamma',par.gamma);
set_param_value('sigshock',par.sigshock);
set_param_value('k_init',par.k_init);
set_param_value('y_init',par.y_init);
set_param_value('c_init',par.c_init);
set_param_value('i_init',par.i_init);
```


Model equations

Now, you need to write the equilibrium equations of your model. Note, here I write all variables in exp so that Dynare linearizes around logs of the variables. That is, the level of consumption is actually $\exp (c)$:

```
% 3. Model equations
*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
% Below fill in the model block
*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1!!!!
model;
exp(c)+exp(k) = exp (y)+(1-delta)*exp (k(-1));
exp(y)= exp(a)*(exp (k(-1))^alpha);
a = rho*a(-1)+e;
exp(c)^(-gamma) = beta* exp (c(+1))^(-gamma)*(alpha* exp (a (+1))* (exp (k)^(alpha-l))+1-delta);
exp(i) = exp(k) - (l-delta)* exp(k(-1));
end;
```


Model equations II

Dynare has as convention to time the variable on when it is decided. As K_{t+1} has been already decided in t, it is dated with t. In contrast, C_{t+1} is decided in $t+1$ and, hence, is dated with +1 :

```
% 3. Model equations
```



```
* Below fill in the model block
%!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
model;
exp (c)+exp (k) = exp (y)+(1-delta)*exp (k(-1));
exp (y) = exp (a)* (exp (k(-1))^alpha);
a = rho*a(-1)+e;
exp(c)^(-gamma) = beta* exp (c(+1))^(-gamma)* (alpha* exp (a(+1))* (exp (k)^(alpha-1))+1-delta);
exp(i) = exp (k) - (1-delta)*exp (k(-1));
end;
```


Steady state

Next, you need to compute the steady state. Dynare uses a non-linear equation solver (Newton). Here, you need to provide some initial values:

```
------------------------------------------------------
% 4. Steady states
initval;
k = k_init;
y = y_init;
c = c_init;
i = i_init;
a = 0;
end;
steady;
```


Exogenous shocks

Next, we need to specify the exogenous shocks which is just one in our case:

```
% 5. Shocks
shocks;
var e; stderr sigshock;
end;
```

\%---

Solution

Finally, you need to tell Dynare to compute the solution to the model. I tell Dynare here to apply a HP-filter and a first-order Taylor series approximation:
\qquad
stoch_simul(hp_filter= 1600 , order $=1$);

Understanding the Dynare output

First, Dynare provides you with the solution of steady-state variables (in my code the log steady state):

```
STEADY-STATE RESULTS:
c 0.835782
k 3.34457
a 0
y 1.10371
i -0.344308
```


Understanding the Dynare output II

Next, Dynare gives us the policy functions. The constant is simply the steady state:

```
POLICY AND TRANSITION FUNCTIONS
```

	c	k	a	y	i
Constant	0.835782	3.344571	0	1.103709	-0.344308
$\mathrm{k}(-1)$	0.440543	0.974256	0	0.330000	-0.029780
a (-1)	0.345784	0.072913	0.950000	0.950000	2.916523
e	0.363983	0.076751	1.000000	1.000000	3.070024

For example, given my log definition of variables, the policy function for consumption is written as

$$
\begin{equation*}
\hat{C}_{t}=a_{1} \hat{K}_{t}+a_{2} \hat{A}_{t-1}+a_{3} \epsilon_{t} \tag{60}
\end{equation*}
$$

Understanding the Dynare output III

Next, we receive some summary statistics computed on the HP-filtered data:

THEORETICAL MOMENTS	(HP	filter, lambda $=1600$)	
VARIABLE	MEAN	STD. DEV.	VARIANCE
c	0.8358	0.0047	0.0000
k	3.3446	0.0034	0.0000
a	0.0000	0.0124	0.0002
y	1.1037	0.0124	0.0002
i	-0.3443	0.0380	0.0014

Understanding the Dynare output IV

Then, Dynare provides the correlation among HP-filtered variables:

| MATRIX OF CORRELATIONS | (HP filter, lambda $=1600$) | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Variables | c | k | a | y | i |
| c | 1.0000 | 0.5298 | 0.9475 | 0.9725 | 0.9466 |
| k | 0.5298 | 1.0000 | 0.2307 | 0.3178 | 0.2281 |
| a | 0.9475 | 0.2307 | 1.0000 | 0.9959 | 1.0000 |
| y | 0.9725 | 0.3178 | 0.9959 | 1.0000 | 0.9956 |
| i | 0.9466 | 0.2281 | 1.0000 | 0.9956 | 1.0000 |

Understanding the Dynare output V

Finally, we have the autocorrelation structure of HP-filtered variables:

| COEFFICIENTS OF | AUTOCORRELATION | (HP filter, lambda $=1600$) | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Order | 1 | 2 | 3 | 4 | 5 |
| c | 0.7528 | 0.5341 | 0.3447 | 0.1845 | 0.0524 |
| k | 0.9603 | 0.8640 | 0.7306 | 0.5759 | 0.4128 |
| a | 0.7133 | 0.4711 | 0.2711 | 0.1098 | -0.0163 |
| y | 0.7195 | 0.4810 | 0.2826 | 0.1216 | -0.0055 |
| i | 0.7131 | 0.4710 | 0.2709 | 0.1096 | -0.0165 |

Comparing model and data

	Data			
	Y	C	I	TFP
Std. \%	1.61	1.25	7.27	1.25
ACR(1)	0.78	0.68	0.78	0.76
Model				
Std. \%	1.24	0.47	3.8	1.24
ACR(1)	0.72	0.75	0.71	0.71

Comparing model and data

Correlations

Comparing model with data

The successes:

- The model replicates broad co-movement of all macroeconomic aggregates.
- The autocorrelations of all aggregates are of the right size.
- Investment is much more volatile than other aggregates.
- Consumption is less volatile than output.
- The correlation is weakest between consumption and other aggregates suggesting consumption smoothing.

The misses:

- The model has too little propagation: Output just as volatile as TFP.
- The co-movements between the variables is too strong.

Monte-Carlo simulation and impulse responses

- Dynare computes so called impulse responses.
- You may want to do this yourself.
- Dynare can compute moments based on simulations of the model.
- Again, you may want to simulate the economy yourself.
- For this, we use the policy functions that Dynare has computed.

State-space representation

- Dynare saves the policy functions in their so called state-space form.
- Let S_{t} be a vector of the states, i.e. \hat{K}_{t} and \hat{A}_{t}.
- Let X_{t} be a vector of the controls, i.e. \hat{C}_{t}, \hat{Y}_{t} and \hat{I}_{t}.

$$
\begin{align*}
& S_{t}=A S_{t-1}+B \epsilon_{t} \tag{61}\\
& X_{t}=C S_{t-1}+D \epsilon_{t} \tag{62}
\end{align*}
$$

Understanding Dynare

- Dynare stores these matrices.
- Matrices A and C are stored in oo_.dr.ghx.
- Matrices B and D are stored in oo_.dr.ghu.
- The order of the variables is not as we have defined variables. The vector oo_.dr.inv_order_var provides the mapping from our order of variables to the order that Dynare has stored the variables.

Retrieving the matrices

```
%order that variables are declared
p_c = 1;
p_k = 2;
p_a = 3;
p_y = 4;
p_i = 5;
%dynamics of states to states
A = [OO_.dr.ghx(OO_.dr.inv_order_var(p_k),:);
    OO_.dr.ghx(OO_.dr.inv_order_var(p_a),:)];
%dynamics of shocks to states
B = [OO_.dr.ghu(OO_.dr.inv_order_var(p_k),:);
    OO_.dr.ghu(OO_.dr.inv_order_var(p_a),:)];
%dynamics of states to controlls
C = [OO_.dr.ghx(OO_.dr.inv_order_var(p_c), :);
    OO_.dr.ghx(OO_.dr.inv_order_var(p_y), :);
    OO_.dr.ghx(OO_.dr.inv_order_var(p_i),:)];
%dynamics of shocks to controlls
D = [OO_.dr.ghu(OO_.dr.inv_order_var(p_c), :);
    OO_.dr.ghu(OO_.dr.inv_order_var(p_y),:);
    OO_.dr.ghu (OO_.dr.inv_order_var(p_i),:)];
```


Impulse response functions

- Using the state-space representation also allows us to compute what is called impulse responses.
- This is the dynamic behavior of all variables that have been in steady state and receive a one-time exogenous shock (1 std).
- After this one shock, no further shocks occur and the economy will eventually return to its steady state.
- In period one, this is simply

$$
\begin{align*}
& S_{1}=B \epsilon_{1} \tag{63}\\
& X_{1}=D \epsilon_{1} \tag{64}
\end{align*}
$$

- Afterwards, we have with no further shocks:

$$
\begin{align*}
& S_{t}=A S_{t-1} \tag{65}\\
& X_{t}=C S_{t-1} \tag{66}
\end{align*}
$$

Impulse response functions

Impulse response functions II

- After an increase in productivity, investment increases.
- This leads to a slow build-up in capital.
- Higher TFP and capital increase output.
- As MPK is high initially, consumption rises by less than investment.
- Over time, as MPK declines, consumption increases.
- As output returns to its initial level, consumption starts to decline again at some point.
- In total, consumption is relatively smooth.

Simulating the economy

- The idea is to draw a long series of random numbers for the productivity shocks.
- Given these shocks, we can compute the resulting macroeconomic aggregates.

```
randn('seed', 2557)
e = par.sigshock^randn(par.T,1);
Ssim = zeros(2,par.T); %states
Xsim = zeros(3,par.T); %controls
Ssim(:,1) = B*e(1);
for t = 2:par.T
        Ssim(:,t) = A*Ssim(:,t-1)+\mp@subsup{B}{}{*}e(t);
        Xsim(:,t) = C*Ssim(:,t-1) +D*e(t);
end
% HP filter
[~,hp.k] = hpfilter(Ssim(1,:)',1600);
[~,hp.a] = hpfilter(Ssim(2,:)',1600);
[~,hp.c] = hpfilter(Xsim(1,:)',1600);
[~,hp.y] = hpfilter(Xsim(2,:)',1600);
[~,hp.i] = hpfilter(Xsim(3,:)',1600);
```


Results of the simulation

Back to the beginning

- So far, we have solved the model using (log)-linearization.
- We are now going to solve the model globally.
- In particular, we are going to use value function iteration.
- Importantly, now uncertainty is going to matter.

The recursive formulation

You have already seen the recursive formulation:

$$
\begin{equation*}
V(K, A)=\max _{C, K^{\prime}}\left\{\frac{C_{t}^{1-\gamma}}{1-\gamma}+\mathbb{E}_{t} V\left(K^{\prime}, A^{\prime}\right)\right\} \tag{67}
\end{equation*}
$$

s.t.

$$
\begin{aligned}
& C_{t}+K_{t+1}=Y_{t}+(1-\delta) K_{t} \\
& Y_{t}=A_{t} K_{t}^{\alpha} \\
& I_{t}=K_{t+1}-(1-\delta) K_{t} \\
& \ln A_{t+1}=\rho \ln A_{t}+\epsilon_{t+1}
\end{aligned}
$$

Solving the recursive formulation

- We have to parametrize \mathbb{E}_{t}.
- We assume productivity follows a continuous $A R(1)$ process. To put it in a computer, we need to discretize it.
- The method most commonly used for this is the

Tauchen algorithm.

Value function iteration algorithm

- Construct a grid for capital $K_{i}=\left\{k_{1}, k_{2}, \ldots k_{N_{k}}\right\}$.
- Construct a grid for productivity $A_{j}=\left\{A_{1}, A_{2}, \ldots A_{N_{s}}\right\}$ and corresponding transition matrix P.
(1) Guess a continuous/increasing value function $V^{0}\left(K_{i}, A_{j}\right)$ of dimension $N_{k} X N_{a}$.
(2) Solve $V^{n}(K, A)=\max _{C, K^{\prime}}\left\{u(c)+\beta P\left(A, A^{\prime}\right) V^{n-1}\left(K^{\prime}, A^{\prime}\right)\right\}$.
(3) Replace last iteration guess by new solution $V^{n-1}=V^{n}$.
(9) Iterate until $\left|V^{n}-V^{n-1}\right|<c r i t$.

Appendix

Appendix

Solving the system (general form)

Blanchard and Kahn (1980) suggest one possible solution technique that first writes the problem in VAR form:

$$
A_{1}\left[\begin{array}{l}
\mathbb{E}_{t} X_{t+1} \tag{68}\\
\mathbb{E}_{t} Y_{t+1}
\end{array}\right]=A_{0}\left[\begin{array}{l}
X_{t} \\
Y_{t}
\end{array}\right]+a Z_{t+1}
$$

where X_{t} are the state variables $\left(\hat{K}_{t}, \hat{A}_{t}\right), Y_{t}$ are the forward-looking controls (or jumpers, \hat{C}_{t}), and Z_{t+1} are mean zero shocks. Note, for simplicity, I omit output, \hat{Y}_{t}, and investment, \hat{I}_{t}, which can be derived from the other variables.

Solving the system (our case)

$$
\begin{align*}
& {\left[\begin{array}{ccc}
(1-\alpha) \frac{1}{\gamma}(1-\beta(1-\delta)) & -\frac{1}{\gamma}(1-\beta(1-\delta)) & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\hat{K}_{t+1} \\
\mathbb{E}_{t} \hat{A}_{t+1} \\
\mathbb{E}_{t} \hat{C}_{t+1}
\end{array}\right]=} \\
& \tag{69}\\
& {\left[\begin{array}{ccc}
0 \frac{Y^{s s}}{K^{s s}}+1-\delta & \begin{array}{c}
Y^{s s} \\
K^{s s}
\end{array} & -\frac{C^{s s}}{K^{s s}} \\
0 & \rho & 0
\end{array}\right]\left[\begin{array}{c}
\hat{K}_{t} \\
\hat{A}_{t} \\
\hat{C}_{t}
\end{array}\right]+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \epsilon_{t+1}}
\end{align*}
$$

Back to the general case

Define $A=A_{1}^{-1} A_{0}$ and $R=A_{1}^{-1} a$:

$$
\left[\begin{array}{l}
\mathbb{E}_{t} X_{t+1} \tag{70}\\
\mathbb{E}_{t} Y_{t+1}
\end{array}\right]=A\left[\begin{array}{l}
X_{t} \\
Y_{t}
\end{array}\right]+R Z_{t+1}
$$

Blanchard and Kahn (1980) show that

- a unique solution exists iff the number of eigenvalues of A lying outside the unit circle (unstable roots) is equal to the number of jumpers.
- no solution exists if there are too many unstable eigenvalues.
- infinitely many solutions exist if there are too few unstable eigenvalues.

Root Finding

We are looking for x_{1}, \ldots, x_{n} such that

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \Leftrightarrow\left\{\begin{array}{l}
0=f^{1}\left(x_{1}, \ldots, x_{n}\right) \tag{71}\\
\ldots \\
0=f^{n}\left(x_{1}, \ldots ., x_{n}\right)
\end{array}\right.
$$

For simplicity, let us start with the univariate case:

$$
\begin{equation*}
f(x)=0 \tag{72}
\end{equation*}
$$

Newton-Raphson Method

- Newton method uses first order approximation to the function.
- First order approximation around guess x_{0} :

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- Setting $f(x)=0$ and solving for x gives new guess:

$$
x^{\prime}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

The tangent intersects the x-axis.

- This requires numerical differentiation (in one second)!

Modified Newton-Raphson Method

- When the objective function is close to flat around x^{0}, the linear approximation may lead to a poor prediction.
- Function may not be defined at x^{\prime}.

Reformulating the problem is often possible.

- The Modified Newton-Raphson Method updates slowly $\lambda \in[0,1]$:

$$
x^{\prime}=x_{0}-\lambda \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

Multivariate case

The method can be extended straightforward to the multivariate case:

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \Leftrightarrow\left\{\begin{array}{l}
0=f^{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \\
0=f^{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

Define the Jacobian:

$$
\mathbf{J}(\mathbf{a})=\left[\begin{array}{ccccc}
f_{1}^{1} & f_{2}^{1} & f_{3}^{1} & \ldots & f_{n}^{1} \\
f_{1}^{2} & f_{2}^{2} & f_{3}^{2} & \ldots & f_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f_{1}^{n} & f_{2}^{n} & f_{3}^{n} & \ldots & f_{n}^{n}
\end{array}\right], \quad f_{j}^{i}=\frac{\partial f^{i}(\mathbf{x})}{\partial x_{j}}
$$

Multivariate case II

Approximate

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{0}\right)+\mathbf{J}\left(\mathbf{x}_{\mathbf{0}}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

with solution

$$
\mathbf{x}^{\prime}=\mathbf{x}_{0}-\lambda \mathbf{J}\left(\mathbf{x}_{0}\right)^{-1} \mathbf{f}\left(\mathbf{x}_{0}\right)
$$

Numerical Differentiation

For this algorithm, we need to compute

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Simplest method called one sided approximation:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \text {. Slope error proportional to } h
$$

Numerical Differentiation II

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Two sided approximation:
$f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}$. Slope error proportional to h^{2}.

Markov Chains

- Idea: Use a first-order Markov chain to approximate the continuous $A R(1)$ process.
- A Markov-chain is characterized by a discrete grid $s_{i}, i=1: N$ and a transition probability matrix P giving the probability to move from point i to $j, p_{i j}$.
- Hence, $S_{t}=P S_{t-1}$ gives the probability distribution over states in recursive form.

Markov Approximation of $A R(1)$

Consider the generalized $A R(1)$ process:

$$
A_{t}=(1-\rho) \mu+\rho A_{t-1}+\epsilon_{t} \quad \epsilon_{t} \sim N\left(0, \sigma^{2}\right)
$$

- The process has a mean μ.
- We impose normality for the shock distribution!
- Ergodic distribution is $N\left(\mu, \sigma_{A R}^{2}\right)$ with $\sigma_{A R}^{2}=\frac{\sigma^{2}}{1-\rho^{2}}$.

Tauchen (1986) Algorithm

- Idea: Partition ergodic distribution in N bins and choose points in bins representing those bins.
- Choose N bins such that each is equally likely.

Graphical Representation

Create Bins

Choose boundaries, b_{i}, of bins, S_{i}, according to:

$$
P\left(b \in S_{i}\right)=\Phi\left(\frac{b_{i+1}-\mu}{\sigma_{A R}}\right)-\Phi\left(\frac{b_{i}-\mu}{\sigma_{A R}}\right)=\frac{1}{N}
$$

Hence,

$$
\begin{gathered}
\Phi\left(\frac{b_{i+1}-\mu}{\sigma_{A R}}\right)=\frac{i}{N} . \\
\text { or } \\
b_{i+1}=\sigma_{A R} \Phi^{-1}\left(\frac{i}{N}\right)+\mu .
\end{gathered}
$$

Centers of Bins

Next is to choose a representative element, s_{i}, for each bin:

$$
s_{i}=\left(s \mid s \in S_{i}\right)
$$

One can show that with a normal distribution this is:

$$
s_{i}=N \sigma_{A R}\left[\phi\left(\frac{b_{i}-\mu}{\sigma_{A R}}\right)-\phi\left(\frac{b_{i+1}-\mu}{\sigma_{A R}}\right)\right]+\mu
$$

Transition Probabilities

We need to know the transition matrix. E.g., what is the probability for $s \in S_{i}$ to move to $s^{\prime} \in S_{j} ?$

We need

$$
\begin{aligned}
& b_{j} \leq \rho s+(1-\rho) \mu+\epsilon \\
& b_{j+1} \geq \rho s+(1-\rho) \mu+\epsilon
\end{aligned}
$$

Thus

$$
\epsilon \in\left[b_{j}-\rho s-(1-\rho) \mu, b_{j+1}-\rho s-(1-\rho) \mu\right] .
$$

Simplified Tauchen Algorithm

$$
\begin{aligned}
& p_{i, j}=P\left(s^{\prime} \in S_{j} \mid s \in S_{i}\right)= \\
& \quad \Phi\left(\frac{b_{j+1}-\rho s_{i}-(1-\rho) \mu}{\sigma}\right)-\Phi\left(\frac{b_{j}-\rho s_{i}-(1-\rho) \mu}{\sigma}\right) .
\end{aligned}
$$

- There is a more accurate formulation where all points in S_{i} are taken into account, not only s_{i}.
- This requires integrating over the relevant part of the distribution and weighting by the probability of each occurrence.
[1] Finn E Kydland and Edward C Prescott. "Time to build and aggregate fluctuations". In: Econometrica: Journal of the Econometric Society (1982), pp. 1345-1370.
[2] Friedrich A Hayeck. Prices and production. George Routledge and Sons, Ltd, London, 1932.
[3] John Maynard Keynes. "The general theory of employment". In: The quarterly journal of economics 51.2 (1937), pp. 209-223.
[4] Alban W Phillips. "The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861-1957". In: economica 25.100 (1958), pp. 283-299.
[5] Robert E Lucas Jr. "Expectations and the Neutrality of Money', Journal of Economic Theory, April". In: (1972).
[6] Olivier Jean Blanchard and Charles M Kahn. "The solution of linear difference models under rational expectations". In: Econometrica: Journal of the Econometric Society (1980), pp. 1305-1311.
[7] George Tauchen. "Finite state markov-chain approximations to univariate and vector autoregressions". In: Economics letters 20.2

